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Abstract. The paper deals with the theoretical investigation of nonlinear surface polaritons (NSP) in
isolated two-dimensional electron system (2DES) arranged at the interface between linear and nonlinear
media and placed into the external quantizing magnetic field directed perpendicularly to 2DES. We consider
that nonlinear medium dielectric permeability depends upon the tangential component of electric field only.
It is shown that under the integer quantum Hall effect conditions all NSP characteristics are represented
by the quantized values. It is found that the NSP spectrum contains two NSP modes – high-frequency
and low-frequency ones. It is shown that the NSP can exist only in the case where the value of tangential
component of electric field at the interface is less than a certain critical value. It is found that the resonant
interaction between the NSP high-frequency mode and surface polariton mode occurs in the vicinity of the
cyclotron resonance subharmonic.

PACS. 73.20.Mf Collective excitations (including excitons, polarons, plasmons and other charge-density
excitations)

1 Introduction

Surface polaritons (SP) in nonlinear media possess some
new features in comparison with SP in linear media. For
example, an excitation of SP becomes possible without
using prisms and periodical structures. It can occur when
the finite wave train falls directly upon the interface [1].

The nonlinear surface polaritons (NSP) were earlier
investigated at a single interface [2] and also in a super-
lattice [3]. The NSP at the interface between linear and
nonlinear media were studied theoretically in [2] in the
case of quadratic dependence of nonlinear medium dielec-
tric permeability upon the tangential component of TM-
wave electric field. In [2] it was shown that depending on
the relation between signs of dielectric constants of con-
tacting media two types of NSP can exist at the interface.
In the case where signs of the above-mentioned dielectric
constants are different, the electric field of NSP decreases
monotonically when the distance from the interface in-
creases. At the same time in the case where the signs of
dielectric constants coincide, the NSP electric field has a
maximum in the region occupied by a nonlinear medium.

It is known that the SP spectrum essentially changes
when the two-dimensional electron system (2DES) is pla-
ced at the interface [4,5]. It should be noticed that linear
SP in the single 2DES were studied theoretically both in
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the absence [4] and in the presence of external quantiz-
ing [5] magnetic field.

This paper deals with the theoretical investigation of
NSP in single 2DES, placed at the plane z = 0. The exter-
nal quantizing magnetic field is directed perpendicularly
to 2DES along the axis z. We consider that the external
magnetic field is high enough to cause the phenomenon of
integer quantum Hall effect (IQHE) in 2DES. We suppose
that half-space z < 0 is occupied by an isotropic linear
medium with the dielectric constant ε1, and half-space
z > 0 is occupied by a nonlinear medium. Following [2]
we suppose that the nonlinear medium dielectric tensor
possesses only diagonal components, which depend upon
the electric field component Ex only, i.e.:

εxx = εyy = ε + ρ|Ex|2, εzz = ε0. (1)

We use such an exotic model of the dielectric tensor to ob-
tain the analytical expression for NSP dispersion relation.
Speaking strictly, there are no crystallographic classes for
which such a form of dielectric tensor arises from the
symmetry considerations. However, the cases are possible
when the distinction from that model is neglible [6].

2 Dispersion relation

Supposing that the electromagnetic field depends upon
time and coordinate as E,H ∼ exp(i [kx − ωt]) (here k
and ω are the wavenumber and the frequency of wave,
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correspondingly), the Maxwell equations for complex am-
plitudes of electromagnetic field components can be writ-
ten as
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Here sign “+” corresponds to the electromagnetic field
components in the nonlinear medium, and sign “−” cor-
responds to the components in the linear one.

Eliminating H+
y and E+

z from the system of equa-
tions (2) and taking into account formulas (1), we ob-
tain the differential equation for the electric field compo-
nent E+

x in the nonlinear medium:
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where p2
0 = k2 − ω2εzz/c2. We consider the case, when

ρ < 0. Under conditions E+
x (∞) → 0,
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the solution of equation (6) takes the form:
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Here z0 is the integration constant.
Eliminating H+

x and H+
z from the system of equa-

tions (3) and taking into account formula (7) for E+
x , we

obtain the differential equation for the electric field com-
ponent E+
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where p2 = k2 − ω2ε/c2. The solution of equation (8),
which satisfy condition E+

y (∞) → 0, can be obtained us-
ing the JWKB method in the form:
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It should be emphasized that the JWKB-solution of equa-
tion (8) is true only when p � 1.

The solutions of Maxwell equations for tangential com-
ponents of the SP electromagnetic field in the linear medi-
um under conditions E−,H−|z→−∞ → 0 can be written as

E−
x (k, ω, z) = E−

x (0) exp (p1z), (10)
E−

y (k, ω, z) = E−
y (0) exp (p1z), (11)

where p2
1 = k2−ω2ε1/c2. To obtain the dispersion relation,

which describes the NSP propagation, we use standard
boundary conditions. We consider that tangential compo-
nents of electric field are continuous across the interface
z = 0, and tangential components of magnetic field are
discontinuous across the interface due to the presence of
currents in 2DES. In other words,

H+
x − H−

x = (4π/c)jys = (4π/c)(σyxEx + σyyEy),

H+
y − H−

y = −(4π/c)jxs = −(4π/c)(σxxEx + σxyEy).

Applying such boundary conditions at the interface
z = 0, after some algebra we obtain the dispersion relation
in the form:
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where T = tanh (p0

√
ε/ε0z0) = ±√

1 − |ρ|E2
x(0)/(2ε),

Ex(0)=E+
x (0)=E−

x (0). Notice that in the case where the
nonlinearity is absent (ρ = 0) and ε0 = ε, the equa-
tion (12) coincides with the dispersion relation for linear
SP [6]. For the analysis of the NSP dispersion properties
we use the formulas for σαβ(k, ω) under the IQHE condi-
tions, obtained in [5]:
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Here C =
(k�)2

γ2(γ2 + 4)

(
1 +

ℵ
2

)
, γ = (ν − iω)/Ω, Ω =

eB/m∗c is the frequency of the cyclotron resonance (CR),
e, m∗, ν are the charge, the effective mass and the mo-
mentum relaxation frequency of electrons, � = (c�/eB)1/2

is the magnetic length, ℵ = π�2n is the Landau-level fill-
ing factor, n is the two-dimensional density of electrons in
2DES.
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Fig. 1. NSP dispersion curves in 2DES in the case when ε =
ε0 = ε1 = 12, ℵ = 1.

3 Numerical results

Figure 1 presents the dispersion curves, describing
the NSP propagation in 2DES, for different values of
x-component of the electric field at the interface Ex(0).
These dispersion curves were obtained by the numerical
solution of equation (12). The x-axis gives the dimension-
less wavenumber ck/Ω, and the y-axis gives the dimen-
sionless frequency ω/Ω. The SP dispersion curve in the
case, where 2DES is placed at the boundary of two linear
media with the same parameters, is depicted by a dashed
line ρ = 0. The “light line” ω = k vd is depicted in Figure 1
by a dashed line. Here vd = c/

√
ε is the phase velocity of

light in dielectric with dielectric constant ε. As the model
of 2DES we used a heterostructure GaAs/AlxGa1−xAs
with the effective mass of the electrons m∗ = 0.068m0

(m0 is the mass of free electron) and with the dielectric
constant ε = ε0 = ε1 = 12. The dissipation of electrons in
2DES was not taken into account (ν = 0).

Notice that it follows from the formula (7) that NSP
can exist only as Ex(0) ≤ Emax

x =
√

2ε/|ρ| (in oppo-
site case the parameter z0 will not be real value). As seen
from Figure 1, when ρ < 0, the NSP dispersion curves
exist in the higher-frequency region in comparison with
the SP dispersion curve in the linear case. That fact can
be explained like this: it follows from formulas (1) that if
ρ < 0 and Ex �= 0, then εxx = εyy < ε. So, in that case
nonlinearity leads to the decrease of the effective value of
the dielectric constant. In it’s turn it causes shifting of the
NSP dispersion curves to the higher-frequency region. It
should be noticed that two modes of NSP correspond to
each value of Ex(0) < Emax

x . Low-frequency NSP mode
corresponds to the case, where z0 < 0. It should be em-
phasized that the dispersion curves, which correspond to
that low-frequency NSP mode, have the end-points of the
spectrum p = 0, lying on the light line. As distinct from
the linear case the end-points of these dispersion curves
lie in the vicinity of the CR. At the same time the disper-
sion curves corresponding to low-frequency NSP modes at
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Fig. 2. NSP dispersion curves in 2DES in the case when ε =
ε0 = ε1 = 12, (|ρ|)1/2Ex(0) = 3.0 and for two values of Landau-
level filling factor: ℵ = 5 (bold solid curves) and ℵ = 1 (thin
solid curves).

high values of wavenumber practically coincides with the
SP dispersion curves in the linear case. The high-frequency
NSP mode corresponds to the case, where z0 > 0. Notice
that this NSP mode have no analogue in the linear case.
As seen from Figure 1, the spectrum end-points of these
dispersion curves coincide with the spectrum end-points
of corresponding low-frequency NSP modes. With an in-
crease of Ex(0) the end-points of the NSP spectrum shift
to the higher-frequency region. Also with the increase of
Ex(0) dispersion curves, corresponding to high-frequency
and low-frequency modes, gradually draw together and
when Ex(0) = Emax

x two NSP modes blend into one mode
(in this case z0 = 0). It should be emphasized that as the
value of external quantizing magnetic field varies all the
NSP characteristics undergo the variation in discrete steps
due to step-like dependence of ℵ(B).

Now we consider the peculiarities of NSP dispersion
curves in a wider range of frequencies and wavenumbers.
Figure 2 presents the NSP dispersion curves for the fixed
value Ex(0) and for two values of ℵ. As Figure 2 shows,
the low-frequency NSP mode at high values of k is char-
acterized by anomalous dispersion. At the same time with
the increase of ℵ the point at which the character of NSP
dispersion changes from normal to anomalous shifts to the
region of smaller values of k (to the longer-wave region).
At the same time the resonant interaction between the
high-frequency NSP mode and the SP mode which exists
near the CR subharmonic frequency occurs in the vicinity
of that CR subharmonic frequency (that above-mentioned
SP mode was described in [5]). It should be emphasized
that with the increase of ℵ the point of resonant inter-
action shifts to the longer-wave region. At the same time
at the point of resonant interaction the character of high-
frequency NSP mode dispersion tends to change: the nor-
mal dispersion transforms into anomalous.

We consider now the spatial pattern of the NSP mode
electromagnetic field. Figure 3 presents tangential com-
ponents of the NSP low-frequency mode electric field in
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Fig. 3. Components of electric field Ex (a) and Ey (b) of NSP
low-frequency mode when (|ρ|)1/2Ex(0) = 3.0, ℵ = 1.

the case of fixed value of Ex(0). Horizontal axes give
the dimensionless wavenumber ck/Ω and dimensionless
z-coordinate Ωz/c. Vertical axes give the dimensionless
electric fields (|ρ|)1/2Ex (Fig. 3a) and (|ρ|)1/2Ey (Fig. 3b).
As seen from Figures 3a, b, magnitudes of tangential com-
ponents Ex(z) and Ey(z) of the NSP low-frequency mode
electric field decrease monotonically when the distance
from the interface z = 0 increases. At the same time
the higher the value of wavenumber k the more drastic
is decrease of the electric field components Ex(z), Ey(z)
when the distance from interface increases. It should be
noted that when the value Ex(0) is fixed, the value Ey(0)
decreases gradually with an increase of the wavenumber
(Fig. 3b).

Figure 4 presents the spatial pattern of the NSP
high-frequency mode electric field tangential components
at the same parameters. Notice that in that case the value
of Ex(z) behaves as follows. When z < 0, value of Ex(z)
decreases with the increase of distance from the interface
(as in the case of low-frequency mode). However at z > 0
the value of Ex(z) possesses it’s maximum Emax

x at point
z = z0. It should be emphasized that the depth of the
electric field localization z0 decreases as the wavenumber
increases. Notice that the y-component of the electric field
Ey(z) of the high-frequency mode decreases monotonically
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Fig. 4. Components of electric field Ex (a) and Ey (b) of NSP
high-frequency mode when (|ρ|)1/2Ex(0) = 3.0, ℵ = 1.

with an increase of distance from the interface (as in the
case of the NSP low-frequency mode). At the same time
the value of Ey(0) decreases gradually with the increase
of wavenumber k.

4 Conclusion

We have calculated the spectrum of NSP in isolated 2DES
placed into the quantizing magnetic field. We predicted
simultaneous existence of two NSP modes and resonance
interaction between the NSP high-frequency mode and the
mode of SP existing in the vicinity of CR subharmonic.
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